MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabnc Unicode version

Theorem rabnc 3809
Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
Assertion
Ref Expression
rabnc
Distinct variable group:   ,

Proof of Theorem rabnc
StepHypRef Expression
1 inrab 3769 . 2
2 rabeq0 3807 . . 3
3 pm3.24 882 . . . 4
43a1i 11 . . 3
52, 4mprgbir 2821 . 2
61, 5eqtri 2486 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  /\wa 369  =wceq 1395  e.wcel 1818  {crab 2811  i^icin 3474   c0 3784
This theorem is referenced by:  hasheuni  28091  ddemeas  28208  ballotth  28476  jm2.22  30937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-in 3482  df-nul 3785
  Copyright terms: Public domain W3C validator