![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ralbiia | Unicode version |
Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.) |
Ref | Expression |
---|---|
ralbiia.1 |
Ref | Expression |
---|---|
ralbiia |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiia.1 | . . 3 | |
2 | 1 | pm5.74i 245 | . 2 |
3 | 2 | ralbii2 2886 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
e. wcel 1818 A. wral 2807 |
This theorem is referenced by: reusv7OLD 4664 poinxp 5068 soinxp 5069 seinxp 5071 dffun8 5620 funcnv3 5654 fncnv 5657 fnres 5702 fvreseq0 5987 isoini2 6235 smores 7042 resixp 7524 ixpfi2 7838 marypha1lem 7913 ac5num 8438 acni2 8448 acndom 8453 dfac4 8524 brdom7disj 8930 brdom6disj 8931 fpwwe2lem8 9036 axgroth6 9227 rabssnn0fi 12095 lo1res 13382 isprm5 14253 prmreclem2 14435 tsrss 15853 gass 16339 efgval2 16742 efgsres 16756 isdomn2 17948 islinds2 18848 isclo 19588 ptclsg 20116 ufilcmp 20533 cfilres 21735 ovolgelb 21891 volsup2 22014 vitali 22022 itg1climres 22121 itg2seq 22149 itg2monolem1 22157 itg2mono 22160 itg2i1fseq 22162 itg2cn 22170 ellimc2 22281 rolle 22391 lhop1 22415 itgsubstlem 22449 tdeglem4 22458 dvdsmulf1o 23470 dchrelbas2 23512 selbergsb 23760 axcontlem2 24268 dfconngra1 24671 hodsi 26694 ho01i 26747 ho02i 26748 lnopeqi 26927 nmcopexi 26946 nmcfnexi 26970 cnlnadjlem3 26988 cnlnadjlem5 26990 leop3 27044 pjssposi 27091 largei 27186 mdsl2i 27241 mdsl2bi 27242 elat2 27259 dmdbr5ati 27341 cdj3lem3b 27359 subfacp1lem3 28626 dfso3 29097 tfr3ALT 29365 mblfinlem1 30051 voliunnfl 30058 acsfn1p 31148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 df-ral 2812 |
Copyright terms: Public domain | W3C validator |