MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbiim Unicode version

Theorem ralbiim 2989
Description: Split a biconditional and distribute quantifier. Restricted quantifier version of albiim 1699. (Contributed by NM, 3-Jun-2012.)
Assertion
Ref Expression
ralbiim

Proof of Theorem ralbiim
StepHypRef Expression
1 dfbi2 628 . . 3
21ralbii 2888 . 2
3 r19.26 2984 . 2
42, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wral 2807
This theorem is referenced by:  eqreu  3291  isclo2  19589  chrelat4i  27292  2ralbiim  32179  hlateq  35123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-an 371  df-ral 2812
  Copyright terms: Public domain W3C validator