![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ralbiim | Unicode version |
Description: Split a biconditional and distribute quantifier. Restricted quantifier version of albiim 1699. (Contributed by NM, 3-Jun-2012.) |
Ref | Expression |
---|---|
ralbiim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 628 | . . 3 | |
2 | 1 | ralbii 2888 | . 2 |
3 | r19.26 2984 | . 2 | |
4 | 2, 3 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wral 2807 |
This theorem is referenced by: eqreu 3291 isclo2 19589 chrelat4i 27292 2ralbiim 32179 hlateq 35123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ral 2812 |
Copyright terms: Public domain | W3C validator |