![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ralcom | Unicode version |
Description: Commutation of restricted universal quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ralcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2619 | . 2 | |
2 | nfcv 2619 | . 2 | |
3 | 1, 2 | ralcomf 3016 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 A. wral 2807 |
This theorem is referenced by: ralcom4 3128 ssint 4302 iinrab2 4393 disjxun 4450 reusv3 4660 cnvpo 5550 cnvso 5551 fununi 5659 isocnv2 6227 dfsmo2 7037 ixpiin 7515 boxriin 7531 dedekind 9765 rexfiuz 13180 gcdcllem1 14149 mreacs 15055 comfeq 15101 catpropd 15104 isnsg2 16231 cntzrec 16371 oppgsubm 16397 opprirred 17351 opprsubrg 17450 islindf4 18873 cpmatmcllem 19219 tgss2 19489 ist1-2 19848 kgencn 20057 ptcnplem 20122 cnmptcom 20179 fbun 20341 cnflf 20503 fclsopn 20515 cnfcf 20543 caucfil 21722 ovolgelb 21891 dyadmax 22007 ftc1a 22438 ulmcau 22790 perpcom 24090 colinearalg 24213 frgrawopreg2 25051 phoeqi 25773 ho02i 26748 hoeq2 26750 adjsym 26752 cnvadj 26811 mddmd2 27228 cdj3lem3b 27359 cvmlift2lem12 28759 dfpo2 29184 elpotr 29213 heicant 30049 2reu4a 32194 hbra2VD 33660 ispsubsp2 35470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 |
Copyright terms: Public domain | W3C validator |