![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ralcom2 | Unicode version |
Description: Commutation of restricted universal quantifiers. Note that and need not be distinct (this makes the proof longer). (Contributed by NM, 24-Nov-1994.) (Proof shortened by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
ralcom2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2529 | . . . . . . 7 | |
2 | 1 | sps 1865 | . . . . . 6 |
3 | 2 | imbi1d 317 | . . . . . . . . 9 |
4 | 3 | dral1 2067 | . . . . . . . 8 |
5 | 4 | bicomd 201 | . . . . . . 7 |
6 | df-ral 2812 | . . . . . . 7 | |
7 | df-ral 2812 | . . . . . . 7 | |
8 | 5, 6, 7 | 3bitr4g 288 | . . . . . 6 |
9 | 2, 8 | imbi12d 320 | . . . . 5 |
10 | 9 | dral1 2067 | . . . 4 |
11 | df-ral 2812 | . . . 4 | |
12 | df-ral 2812 | . . . 4 | |
13 | 10, 11, 12 | 3bitr4g 288 | . . 3 |
14 | 13 | biimpd 207 | . 2 |
15 | nfnae 2058 | . . . . 5 | |
16 | nfra2 2844 | . . . . 5 | |
17 | 15, 16 | nfan 1928 | . . . 4 |
18 | nfnae 2058 | . . . . . . . 8 | |
19 | nfra1 2838 | . . . . . . . 8 | |
20 | 18, 19 | nfan 1928 | . . . . . . 7 |
21 | nfcvf 2644 | . . . . . . . . 9 | |
22 | 21 | adantr 465 | . . . . . . . 8 |
23 | nfcvd 2620 | . . . . . . . 8 | |
24 | 22, 23 | nfeld 2627 | . . . . . . 7 |
25 | 20, 24 | nfan1 1927 | . . . . . 6 |
26 | rsp2 2831 | . . . . . . . . 9 | |
27 | 26 | ancomsd 454 | . . . . . . . 8 |
28 | 27 | expdimp 437 | . . . . . . 7 |
29 | 28 | adantll 713 | . . . . . 6 |
30 | 25, 29 | ralrimi 2857 | . . . . 5 |
31 | 30 | ex 434 | . . . 4 |
32 | 17, 31 | ralrimi 2857 | . . 3 |
33 | 32 | ex 434 | . 2 |
34 | 14, 33 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
e. wcel 1818 F/_ wnfc 2605 A. wral 2807 |
This theorem is referenced by: tz7.48lem 7125 tratrb 33307 tratrbVD 33661 imo72b2 37993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 |
Copyright terms: Public domain | W3C validator |