![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ralcom3 | Unicode version |
Description: A commutation law for restricted universal quantifiers that swaps the domains of the restriction. (Contributed by NM, 22-Feb-2004.) |
Ref | Expression |
---|---|
ralcom3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.04 82 | . . 3 | |
2 | 1 | ralimi2 2847 | . 2 |
3 | pm2.04 82 | . . 3 | |
4 | 3 | ralimi2 2847 | . 2 |
5 | 2, 4 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
e. wcel 1818 A. wral 2807 |
This theorem is referenced by: tgss2 19489 ist1-3 19850 isreg2 19878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 df-ral 2812 |
Copyright terms: Public domain | W3C validator |