![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ralcomf | Unicode version |
Description: Commutation of restricted universal quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ralcomf.1 | |
ralcomf.2 |
Ref | Expression |
---|---|
ralcomf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomst 452 | . . . 4 | |
2 | 1 | 2albii 1641 | . . 3 |
3 | alcom 1845 | . . 3 | |
4 | 2, 3 | bitri 249 | . 2 |
5 | ralcomf.1 | . . 3 | |
6 | 5 | r2alf 2833 | . 2 |
7 | ralcomf.2 | . . 3 | |
8 | 7 | r2alf 2833 | . 2 |
9 | 4, 6, 8 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 e. wcel 1818
F/_ wnfc 2605
A. wral 2807 |
This theorem is referenced by: ralcom 3018 ssiinf 4379 ralcom4f 27375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 |
Copyright terms: Public domain | W3C validator |