![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > raldifsni | Unicode version |
Description: Rearrangement of a property of a singleton difference. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
Ref | Expression |
---|---|
raldifsni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4155 | . . . 4 | |
2 | 1 | imbi1i 325 | . . 3 |
3 | impexp 446 | . . 3 | |
4 | df-ne 2654 | . . . . . 6 | |
5 | 4 | imbi1i 325 | . . . . 5 |
6 | con34b 292 | . . . . 5 | |
7 | 5, 6 | bitr4i 252 | . . . 4 |
8 | 7 | imbi2i 312 | . . 3 |
9 | 2, 3, 8 | 3bitri 271 | . 2 |
10 | 9 | ralbii2 2886 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 A. wral 2807
\ cdif 3472 { csn 4029 |
This theorem is referenced by: islindf4 18873 snlindsntor 33072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-v 3111 df-dif 3478 df-sn 4030 |
Copyright terms: Public domain | W3C validator |