![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ralimdaa | Unicode version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) (Proof shortened by Wolf Lammen, 29-Dec-2019.) |
Ref | Expression |
---|---|
ralimdaa.1 | |
ralimdaa.2 |
Ref | Expression |
---|---|
ralimdaa |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdaa.1 | . . 3 | |
2 | ralimdaa.2 | . . . 4 | |
3 | 2 | ex 434 | . . 3 |
4 | 1, 3 | ralrimi 2857 | . 2 |
5 | ralim 2846 | . 2 | |
6 | 4, 5 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
F/ wnf 1616 e. wcel 1818 A. wral 2807 |
This theorem is referenced by: ralimdvaOLD 2866 eltsk2g 9150 ptcnplem 20122 infrglb 31584 stoweidlem61 31843 stoweid 31845 fourierdlem73 31962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-ral 2812 |
Copyright terms: Public domain | W3C validator |