![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ralimdv | Unicode version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1632). (Contributed by NM, 8-Oct-2003.) |
Ref | Expression |
---|---|
ralimdv.1 |
Ref | Expression |
---|---|
ralimdv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv.1 | . . 3 | |
2 | 1 | adantr 465 | . 2 |
3 | 2 | ralimdva 2865 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 e. wcel 1818
A. wral 2807 |
This theorem is referenced by: poss 4807 sess1 4852 sess2 4853 riinint 5264 iinpreima 6017 dffo4 6047 dffo5 6048 isoini2 6235 tfindsg 6695 iiner 7402 xpf1o 7699 dffi3 7911 brwdom3 8029 xpwdomg 8032 bndrank 8280 cfub 8650 cff1 8659 cfflb 8660 cfslb2n 8669 cofsmo 8670 cfcoflem 8673 pwcfsdom 8979 fpwwe2lem13 9041 inawinalem 9088 grupr 9196 fsequb 12085 cau3lem 13187 caubnd2 13190 caubnd 13191 rlim2lt 13320 rlim3 13321 climshftlem 13397 isercolllem1 13487 climcau 13493 caucvgb 13502 serf0 13503 modfsummods 13607 cvgcmp 13630 mreriincl 14995 acsfn1c 15059 islss4 17608 riinopn 19417 fiinbas 19453 baspartn 19455 isclo2 19589 lmcls 19803 lmcnp 19805 isnrm3 19860 1stcelcls 19962 llyss 19980 nllyss 19981 ptpjpre1 20072 txlly 20137 txnlly 20138 tx1stc 20151 xkococnlem 20160 fbunfip 20370 filssufilg 20412 cnpflf2 20501 fcfnei 20536 isucn2 20782 rescncf 21401 lebnum 21464 cfilss 21709 fgcfil 21710 iscau4 21718 cmetcaulem 21727 cfilres 21735 caussi 21736 ovolunlem1 21908 ulmclm 22782 ulmcaulem 22789 ulmcau 22790 ulmss 22792 rlimcnp 23295 cxploglim 23307 lgsdchr 23623 pntlemp 23795 axcontlem4 24270 usg2wlkeq 24708 3cyclfrgrarn2 25014 nmlnoubi 25711 lnon0 25713 disjpreima 27445 resspos 27647 resstos 27648 submarchi 27730 crefss 27852 iccllyscon 28695 cvmlift2lem1 28747 ss2mcls 28928 mclsax 28929 setlikess 29275 upixp 30220 caushft 30254 sstotbnd3 30272 totbndss 30273 unichnidl 30428 ispridl2 30435 elrfirn2 30628 mzpsubst 30681 eluzrabdioph 30739 fourierdlem103 31992 fourierdlem104 31993 ralralimp 32295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ral 2812 |
Copyright terms: Public domain | W3C validator |