MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimdvv Unicode version

Theorem ralrimdvv 2880
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.)
Hypothesis
Ref Expression
ralrimdvv.1
Assertion
Ref Expression
ralrimdvv
Distinct variable groups:   , ,   , ,   ,

Proof of Theorem ralrimdvv
StepHypRef Expression
1 ralrimdvv.1 . . . 4
21imp 429 . . 3
32ralrimivv 2877 . 2
43ex 434 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  e.wcel 1818  A.wral 2807
This theorem is referenced by:  ralrimdvva  2881  lspsneu  17769  pmatcoe1fsupp  19202  aalioulem4  22731  fargshiftf1  24637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704
This theorem depends on definitions:  df-bi 185  df-an 371  df-ral 2812
  Copyright terms: Public domain W3C validator