![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ralrimivv | Unicode version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
Ref | Expression |
---|---|
ralrimivv.1 |
Ref | Expression |
---|---|
ralrimivv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivv.1 | . . . 4 | |
2 | 1 | expd 436 | . . 3 |
3 | 2 | ralrimdv 2873 | . 2 |
4 | 3 | ralrimiv 2869 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
e. wcel 1818 A. wral 2807 |
This theorem is referenced by: ralrimivva 2878 ralrimdvv 2880 reuind 3303 disjxiun 4449 somo 4839 ssrel2 5098 sorpsscmpl 6591 f1o2ndf1 6908 soxp 6913 smoiso 7052 smo11 7054 fiint 7817 sornom 8678 axdc4lem 8856 zorn2lem6 8902 fpwwe2lem12 9040 fpwwe2lem13 9041 nqereu 9328 genpnnp 9404 receu 10219 lbreu 10518 injresinj 11926 sqrmo 13085 iscatd 15070 isfuncd 15234 symgextf1 16446 lsmsubm 16673 iscmnd 16810 qusabl 16871 dprdsubg 17071 issrngd 17510 quscrng 17888 mamudm 18890 mat1dimcrng 18979 mavmuldm 19052 fitop 19409 tgcl 19471 topbas 19474 ppttop 19508 epttop 19510 restbas 19659 isnrm2 19859 isnrm3 19860 2ndcctbss 19956 txbas 20068 txbasval 20107 txhaus 20148 xkohaus 20154 basqtop 20212 opnfbas 20343 isfild 20359 filfi 20360 neifil 20381 fbasrn 20385 filufint 20421 rnelfmlem 20453 fmfnfmlem3 20457 fmfnfm 20459 blfps 20909 blf 20910 blbas 20933 minveclem3b 21843 aalioulem2 22729 axcontlem9 24275 wlkdvspthlem 24609 frgrawopreglem4 25047 grpodivf 25248 isabloda 25301 ipf 25626 ocsh 26201 adjadj 26855 unopadj2 26857 hmopadj 26858 hmopbdoptHIL 26907 lnopmi 26919 adjlnop 27005 xreceu 27618 esumcocn 28086 mclsax 28929 ghomf1olem 29034 dfon2 29224 nocvxmin 29451 outsideofeu 29781 hilbert1.2 29805 ontopbas 29893 opnrebl2 30139 nn0prpw 30141 fness 30167 tailfb 30195 neificl 30246 metf1o 30248 crngohomfo 30403 smprngopr 30449 ispridlc 30467 prter2 30622 mzpincl 30666 mzpindd 30678 islptre 31625 lmod1 33093 iunconlem2 33735 bnj1384 34088 snatpsubN 35474 pclclN 35615 pclfinN 35624 ltrncnv 35870 cdleme24 36078 cdleme28 36099 cdleme50ltrn 36283 cdleme 36286 ltrnco 36445 cdlemk28-3 36634 diaf11N 36776 dibf11N 36888 dihlsscpre 36961 mapdpg 37433 mapdh9a 37517 mapdh9aOLDN 37518 hdmap14lem6 37603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ral 2812 |
Copyright terms: Public domain | W3C validator |