![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ralrimivvva | Unicode version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ralrimivvva.1 |
Ref | Expression |
---|---|
ralrimivvva |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivvva.1 | . . . . 5 | |
2 | 1 | 3anassrs 1218 | . . . 4 |
3 | 2 | ralrimiva 2871 | . . 3 |
4 | 3 | ralrimiva 2871 | . 2 |
5 | 4 | ralrimiva 2871 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 e. wcel 1818 A. wral 2807 |
This theorem is referenced by: ispod 4813 swopolem 4814 isopolem 6241 caovassg 6473 caovcang 6476 caovordig 6480 caovordg 6482 caovdig 6489 caovdirg 6492 caofass 6574 caoftrn 6575 2oppccomf 15120 oppccomfpropd 15122 issubc3 15218 fthmon 15296 fuccocl 15333 fucidcl 15334 invfuc 15343 resssetc 15419 resscatc 15432 curf2cl 15500 yonedalem4c 15546 yonedalem3 15549 latdisdlem 15819 isringd 17233 prdsringd 17261 islmodd 17518 islmhm2 17684 isassad 17972 isphld 18689 ocvlss 18703 mdetuni0 19123 mdetmul 19125 isngp4 21131 tglowdim2ln 24032 f1otrgitv 24173 f1otrg 24174 f1otrge 24175 xmstrkgc 24189 eengtrkg 24288 eengtrkge 24289 isgrp2d 25237 isgrpda 25299 isrngod 25381 rngomndo 25423 submomnd 27700 copissgrp 32496 lidlmsgrp 32732 lidlrng 32733 cznrng 32763 islfld 34787 lfladdcl 34796 lflnegcl 34800 lshpkrcl 34841 lclkr 37260 lclkrs 37266 lcfr 37312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-ral 2812 |
Copyright terms: Public domain | W3C validator |