![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > raltpg | Unicode version |
Description: Convert a quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralprg.1 | |
ralprg.2 | |
raltpg.3 |
Ref | Expression |
---|---|
raltpg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralprg.1 | . . . . 5 | |
2 | ralprg.2 | . . . . 5 | |
3 | 1, 2 | ralprg 4078 | . . . 4 |
4 | raltpg.3 | . . . . 5 | |
5 | 4 | ralsng 4064 | . . . 4 |
6 | 3, 5 | bi2anan9 873 | . . 3 |
7 | 6 | 3impa 1191 | . 2 |
8 | df-tp 4034 | . . . 4 | |
9 | 8 | raleqi 3058 | . . 3 |
10 | ralunb 3684 | . . 3 | |
11 | 9, 10 | bitri 249 | . 2 |
12 | df-3an 975 | . 2 | |
13 | 7, 11, 12 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 u. cun 3473
{ csn 4029 { cpr 4031 { ctp 4033 |
This theorem is referenced by: raltp 4084 raltpd 4153 f13dfv 6180 nb3grapr 24453 cusgra3v 24464 3v3e3cycl1 24644 constr3trllem2 24651 constr3trllem5 24654 frgra3v 25002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-v 3111 df-sbc 3328 df-un 3480 df-sn 4030 df-pr 4032 df-tp 4034 |
Copyright terms: Public domain | W3C validator |