![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ralv | Unicode version |
Description: A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
Ref | Expression |
---|---|
ralv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2812 | . 2 | |
2 | vex 3112 | . . . 4 | |
3 | 2 | a1bi 337 | . . 3 |
4 | 3 | albii 1640 | . 2 |
5 | 1, 4 | bitr4i 252 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 e. wcel 1818 A. wral 2807
cvv 3109 |
This theorem is referenced by: ralcom4 3128 viin 4389 issref 5385 ralcom4f 27375 hfext 29840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-ral 2812 df-v 3111 |
Copyright terms: Public domain | W3C validator |