MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxfr Unicode version

Theorem ralxfr 4670
Description: Transfer universal quantification from a variable to another variable contained in expression . (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
ralxfr.1
ralxfr.2
ralxfr.3
Assertion
Ref Expression
ralxfr
Distinct variable groups:   ,   ,   ,   , ,   ,

Proof of Theorem ralxfr
StepHypRef Expression
1 ralxfr.1 . . . 4
21adantl 466 . . 3
3 ralxfr.2 . . . 4
43adantl 466 . . 3
5 ralxfr.3 . . . 4
65adantl 466 . . 3
72, 4, 6ralxfrd 4666 . 2
87trud 1404 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  =wceq 1395   wtru 1396  e.wcel 1818  A.wral 2807  E.wrex 2808
This theorem is referenced by:  rexxfr  4672  infm3  10527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-v 3111
  Copyright terms: Public domain W3C validator