![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ralxfr2d | Unicode version |
Description: Transfer universal quantification from a variable to another variable contained in expression . (Contributed by Mario Carneiro, 20-Aug-2014.) |
Ref | Expression |
---|---|
ralxfr2d.1 | |
ralxfr2d.2 | |
ralxfr2d.3 |
Ref | Expression |
---|---|
ralxfr2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxfr2d.1 | . . . 4 | |
2 | elisset 3120 | . . . 4 | |
3 | 1, 2 | syl 16 | . . 3 |
4 | ralxfr2d.2 | . . . . . . . 8 | |
5 | 4 | biimprd 223 | . . . . . . 7 |
6 | r19.23v 2937 | . . . . . . 7 | |
7 | 5, 6 | sylibr 212 | . . . . . 6 |
8 | 7 | r19.21bi 2826 | . . . . 5 |
9 | eleq1 2529 | . . . . 5 | |
10 | 8, 9 | mpbidi 216 | . . . 4 |
11 | 10 | exlimdv 1724 | . . 3 |
12 | 3, 11 | mpd 15 | . 2 |
13 | 4 | biimpa 484 | . 2 |
14 | ralxfr2d.3 | . 2 | |
15 | 12, 13, 14 | ralxfrd 4666 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 A. wral 2807 E. wrex 2808 |
This theorem is referenced by: rexxfr2d 4669 ralrn 6034 ralima 6152 cnrest2 19787 cnprest2 19791 consuba 19921 subislly 19982 trfbas2 20344 trfil2 20388 flimrest 20484 fclsrest 20525 tsmssubm 20644 metucn 21092 extoimad 37981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 |
Copyright terms: Public domain | W3C validator |