![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ralxp | Unicode version |
Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
ralxp.1 |
Ref | Expression |
---|---|
ralxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpconst 5061 | . . 3 | |
2 | 1 | raleqi 3058 | . 2 |
3 | ralxp.1 | . . 3 | |
4 | 3 | raliunxp 5147 | . 2 |
5 | 2, 4 | bitr3i 251 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 A. wral 2807 { csn 4029
<. cop 4035 U_ ciun 4330 X. cxp 5002 |
This theorem is referenced by: ralxpf 5154 issref 5385 ffnov 6406 eqfnov 6408 funimassov 6452 f1stres 6822 f2ndres 6823 ecopover 7434 xpf1o 7699 xpwdomg 8032 rankxplim 8318 imasaddfnlem 14925 imasvscafn 14934 comfeq 15101 isssc 15189 isfuncd 15234 cofucl 15257 funcres2b 15266 evlfcl 15491 uncfcurf 15508 yonedalem3 15549 yonedainv 15550 efgval2 16742 txbas 20068 hausdiag 20146 tx1stc 20151 txkgen 20153 xkococn 20161 cnmpt21 20172 xkoinjcn 20188 tmdcn2 20588 clssubg 20607 qustgplem 20619 txmetcnp 21050 txmetcn 21051 qtopbaslem 21265 bndth 21458 cxpcn3 23122 dvdsmulf1o 23470 fsumdvdsmul 23471 xrofsup 27582 txpcon 28677 cvmlift2lem1 28747 cvmlift2lem12 28759 mclsax 28929 f1opr 30215 ismtyhmeolem 30300 ffnaov 32284 ovn0ssdmfun 32455 plusfreseq 32460 dih1dimatlem 37056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-iun 4332 df-opab 4511 df-xp 5010 df-rel 5011 |
Copyright terms: Public domain | W3C validator |