![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ralxpmap | Unicode version |
Description: Quantification over functions in terms of quantification over values and punctured functions. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.) |
Ref | Expression |
---|---|
ralxpmap.j |
Ref | Expression |
---|---|
ralxpmap |
J
,, S
,,, ,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3112 | . . 3 | |
2 | snex 4693 | . . 3 | |
3 | 1, 2 | unex 6598 | . 2 |
4 | simpr 461 | . . . . . . 7 | |
5 | elmapex 7459 | . . . . . . . . 9 | |
6 | 5 | adantl 466 | . . . . . . . 8 |
7 | elmapg 7452 | . . . . . . . 8 | |
8 | 6, 7 | syl 16 | . . . . . . 7 |
9 | 4, 8 | mpbid 210 | . . . . . 6 |
10 | simpl 457 | . . . . . 6 | |
11 | 9, 10 | ffvelrnd 6032 | . . . . 5 |
12 | difss 3630 | . . . . . . 7 | |
13 | fssres 5756 | . . . . . . 7 | |
14 | 9, 12, 13 | sylancl 662 | . . . . . 6 |
15 | 5 | simpld 459 | . . . . . . . 8 |
16 | 15 | adantl 466 | . . . . . . 7 |
17 | 6 | simprd 463 | . . . . . . . 8 |
18 | difexg 4600 | . . . . . . . 8 | |
19 | 17, 18 | syl 16 | . . . . . . 7 |
20 | 16, 19 | elmapd 7453 | . . . . . 6 |
21 | 14, 20 | mpbird 232 | . . . . 5 |
22 | ffn 5736 | . . . . . . 7 | |
23 | 9, 22 | syl 16 | . . . . . 6 |
24 | fnsnsplit 6108 | . . . . . 6 | |
25 | 23, 10, 24 | syl2anc 661 | . . . . 5 |
26 | opeq2 4218 | . . . . . . . . 9 | |
27 | 26 | sneqd 4041 | . . . . . . . 8 |
28 | 27 | uneq2d 3657 | . . . . . . 7 |
29 | 28 | eqeq2d 2471 | . . . . . 6 |
30 | uneq1 3650 | . . . . . . 7 | |
31 | 30 | eqeq2d 2471 | . . . . . 6 |
32 | 29, 31 | rspc2ev 3221 | . . . . 5 |
33 | 11, 21, 25, 32 | syl3anc 1228 | . . . 4 |
34 | 33 | ex 434 | . . 3 |
35 | elmapi 7460 | . . . . . . . . . 10 | |
36 | 35 | ad2antll 728 | . . . . . . . . 9 |
37 | vex 3112 | . . . . . . . . . . 11 | |
38 | f1osng 5859 | . . . . . . . . . . . 12 | |
39 | f1of 5821 | . . . . . . . . . . . 12 | |
40 | 38, 39 | syl 16 | . . . . . . . . . . 11 |
41 | 37, 40 | mpan2 671 | . . . . . . . . . 10 |
42 | 41 | adantr 465 | . . . . . . . . 9 |
43 | incom 3690 | . . . . . . . . . . 11 | |
44 | disjdif 3900 | . . . . . . . . . . 11 | |
45 | 43, 44 | eqtri 2486 | . . . . . . . . . 10 |
46 | 45 | a1i 11 | . . . . . . . . 9 |
47 | fun 5753 | . . . . . . . . 9 | |
48 | 36, 42, 46, 47 | syl21anc 1227 | . . . . . . . 8 |
49 | uncom 3647 | . . . . . . . . . 10 | |
50 | simpl 457 | . . . . . . . . . . . 12 | |
51 | 50 | snssd 4175 | . . . . . . . . . . 11 |
52 | undif 3908 | . . . . . . . . . . 11 | |
53 | 51, 52 | sylib 196 | . . . . . . . . . 10 |
54 | 49, 53 | syl5eq 2510 | . . . . . . . . 9 |
55 | 54 | feq2d 5723 | . . . . . . . 8 |
56 | 48, 55 | mpbid 210 | . . . . . . 7 |
57 | ssid 3522 | . . . . . . . . 9 | |
58 | 57 | a1i 11 | . . . . . . . 8 |
59 | snssi 4174 | . . . . . . . . 9 | |
60 | 59 | ad2antrl 727 | . . . . . . . 8 |
61 | 58, 60 | unssd 3679 | . . . . . . 7 |
62 | 56, 61 | fssd 5745 | . . . . . 6 |
63 | elmapex 7459 | . . . . . . . . 9 | |
64 | 63 | ad2antll 728 | . . . . . . . 8 |
65 | 64 | simpld 459 | . . . . . . 7 |
66 | ssun1 3666 | . . . . . . . 8 | |
67 | undif1 3903 | . . . . . . . . 9 | |
68 | 64 | simprd 463 | . . . . . . . . . 10 |
69 | snex 4693 | . . . . . . . . . 10 | |
70 | unexg 6601 | . . . . . . . . . 10 | |
71 | 68, 69, 70 | sylancl 662 | . . . . . . . . 9 |
72 | 67, 71 | syl5eqelr 2550 | . . . . . . . 8 |
73 | ssexg 4598 | . . . . . . . 8 | |
74 | 66, 72, 73 | sylancr 663 | . . . . . . 7 |
75 | 65, 74 | elmapd 7453 | . . . . . 6 |
76 | 62, 75 | mpbird 232 | . . . . 5 |
77 | eleq1 2529 | . . . . 5 | |
78 | 76, 77 | syl5ibrcom 222 | . . . 4 |
79 | 78 | rexlimdvva 2956 | . . 3 |
80 | 34, 79 | impbid 191 | . 2 |
81 | ralxpmap.j | . . 3 | |
82 | 81 | adantl 466 | . 2 |
83 | 3, 80, 82 | ralxpxfr2d 3224 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
C_ wss 3475 c0 3784 { csn 4029 <. cop 4035
|` cres 5006 Fn wfn 5588 --> wf 5589
-1-1-onto-> wf1o 5592
` cfv 5593 (class class class)co 6296
cmap 7439 |
This theorem is referenced by: islindf4 18873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-map 7441 |
Copyright terms: Public domain | W3C validator |