![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ralxpxfr2d | Unicode version |
Description: Transfer a universal quantifier between one variable with pair-like semantics and two. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
Ref | Expression |
---|---|
ralxpxfr2d.a | |
ralxpxfr2d.b | |
ralxpxfr2d.c |
Ref | Expression |
---|---|
ralxpxfr2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2812 | . . . 4 | |
2 | ralxpxfr2d.b | . . . . . 6 | |
3 | 2 | imbi1d 317 | . . . . 5 |
4 | 3 | albidv 1713 | . . . 4 |
5 | 1, 4 | syl5bb 257 | . . 3 |
6 | ralcom4 3128 | . . . 4 | |
7 | ralcom4 3128 | . . . . 5 | |
8 | 7 | ralbii 2888 | . . . 4 |
9 | r19.23v 2937 | . . . . . . 7 | |
10 | 9 | ralbii 2888 | . . . . . 6 |
11 | r19.23v 2937 | . . . . . 6 | |
12 | 10, 11 | bitr2i 250 | . . . . 5 |
13 | 12 | albii 1640 | . . . 4 |
14 | 6, 8, 13 | 3bitr4ri 278 | . . 3 |
15 | 5, 14 | syl6bb 261 | . 2 |
16 | ralxpxfr2d.c | . . . . . 6 | |
17 | 16 | pm5.74da 687 | . . . . 5 |
18 | 17 | albidv 1713 | . . . 4 |
19 | ralxpxfr2d.a | . . . . 5 | |
20 | biidd 237 | . . . . 5 | |
21 | 19, 20 | ceqsalv 3137 | . . . 4 |
22 | 18, 21 | syl6bb 261 | . . 3 |
23 | 22 | 2ralbidv 2901 | . 2 |
24 | 15, 23 | bitrd 253 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 A. wral 2807 E. wrex 2808
cvv 3109 |
This theorem is referenced by: ralxpmap 7488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 |
Copyright terms: Public domain | W3C validator |