MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxpxfr2d Unicode version

Theorem ralxpxfr2d 3224
Description: Transfer a universal quantifier between one variable with pair-like semantics and two. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Hypotheses
Ref Expression
ralxpxfr2d.a
ralxpxfr2d.b
ralxpxfr2d.c
Assertion
Ref Expression
ralxpxfr2d
Distinct variable groups:   , ,   , ,   ,   ,   ,   ,   ,   ,

Proof of Theorem ralxpxfr2d
StepHypRef Expression
1 df-ral 2812 . . . 4
2 ralxpxfr2d.b . . . . . 6
32imbi1d 317 . . . . 5
43albidv 1713 . . . 4
51, 4syl5bb 257 . . 3
6 ralcom4 3128 . . . 4
7 ralcom4 3128 . . . . 5
87ralbii 2888 . . . 4
9 r19.23v 2937 . . . . . . 7
109ralbii 2888 . . . . . 6
11 r19.23v 2937 . . . . . 6
1210, 11bitr2i 250 . . . . 5
1312albii 1640 . . . 4
146, 8, 133bitr4ri 278 . . 3
155, 14syl6bb 261 . 2
16 ralxpxfr2d.c . . . . . 6
1716pm5.74da 687 . . . . 5
1817albidv 1713 . . . 4
19 ralxpxfr2d.a . . . . 5
20 biidd 237 . . . . 5
2119, 20ceqsalv 3137 . . . 4
2218, 21syl6bb 261 . . 3
23222ralbidv 2901 . 2
2415, 23bitrd 253 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  =wceq 1395  e.wcel 1818  A.wral 2807  E.wrex 2808   cvv 3109
This theorem is referenced by:  ralxpmap  7488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-v 3111
  Copyright terms: Public domain W3C validator