![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rankr1ai | Unicode version |
Description: One direction of rankr1a 8275. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankr1ai |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 5897 | . . 3 | |
2 | r1val1 8225 | . . . . . 6 | |
3 | 2 | eleq2d 2527 | . . . . 5 |
4 | eliun 4335 | . . . . 5 | |
5 | 3, 4 | syl6bb 261 | . . . 4 |
6 | r1funlim 8205 | . . . . . . . . . . 11 | |
7 | 6 | simpri 462 | . . . . . . . . . 10 |
8 | limord 4942 | . . . . . . . . . 10 | |
9 | 7, 8 | ax-mp 5 | . . . . . . . . 9 |
10 | ordtr1 4926 | . . . . . . . . 9 | |
11 | 9, 10 | ax-mp 5 | . . . . . . . 8 |
12 | 11 | ancoms 453 | . . . . . . 7 |
13 | r1sucg 8208 | . . . . . . . 8 | |
14 | 13 | eleq2d 2527 | . . . . . . 7 |
15 | 12, 14 | syl 16 | . . . . . 6 |
16 | ordsson 6625 | . . . . . . . . . 10 | |
17 | 9, 16 | ax-mp 5 | . . . . . . . . 9 |
18 | 17, 12 | sseldi 3501 | . . . . . . . 8 |
19 | rabid 3034 | . . . . . . . . 9 | |
20 | intss1 4301 | . . . . . . . . 9 | |
21 | 19, 20 | sylbir 213 | . . . . . . . 8 |
22 | 18, 21 | sylan 471 | . . . . . . 7 |
23 | 22 | ex 434 | . . . . . 6 |
24 | 15, 23 | sylbird 235 | . . . . 5 |
25 | 24 | reximdva 2932 | . . . 4 |
26 | 5, 25 | sylbid 215 | . . 3 |
27 | 1, 26 | mpcom 36 | . 2 |
28 | r1elwf 8235 | . . . . . . 7 | |
29 | rankvalb 8236 | . . . . . . 7 | |
30 | 28, 29 | syl 16 | . . . . . 6 |
31 | 30 | sseq1d 3530 | . . . . 5 |
32 | 31 | adantr 465 | . . . 4 |
33 | rankon 8234 | . . . . . . 7 | |
34 | 17, 1 | sseldi 3501 | . . . . . . 7 |
35 | ontr2 4930 | . . . . . . 7 | |
36 | 33, 34, 35 | sylancr 663 | . . . . . 6 |
37 | 36 | expcomd 438 | . . . . 5 |
38 | 37 | imp 429 | . . . 4 |
39 | 32, 38 | sylbird 235 | . . 3 |
40 | 39 | rexlimdva 2949 | . 2 |
41 | 27, 40 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
E. wrex 2808 { crab 2811 C_ wss 3475
~P cpw 4012 U. cuni 4249 |^| cint 4286
U_ ciun 4330 Ord word 4882 con0 4883 Lim wlim 4884 suc csuc 4885
dom cdm 5004 " cima 5007 Fun wfun 5587
` cfv 5593 cr1 8201
crnk 8202 |
This theorem is referenced by: rankr1ag 8241 tcrank 8323 dfac12lem1 8544 dfac12lem2 8545 r1limwun 9135 inatsk 9177 aomclem4 31003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-r1 8203 df-rank 8204 |
Copyright terms: Public domain | W3C validator |