![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rankr1c | Unicode version |
Description: A relationship between the rank function and the cumulative hierarchy of sets function . Proposition 9.15(2) of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankr1c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 | |
2 | rankdmr1 8240 | . . . 4 | |
3 | 1, 2 | syl6eqel 2553 | . . 3 |
4 | 3 | a1i 11 | . 2 |
5 | elfvdm 5897 | . . . . 5 | |
6 | r1funlim 8205 | . . . . . . 7 | |
7 | 6 | simpri 462 | . . . . . 6 |
8 | limsuc 6684 | . . . . . 6 | |
9 | 7, 8 | ax-mp 5 | . . . . 5 |
10 | 5, 9 | sylibr 212 | . . . 4 |
11 | 10 | adantl 466 | . . 3 |
12 | 11 | a1i 11 | . 2 |
13 | rankr1clem 8259 | . . . . 5 | |
14 | rankr1ag 8241 | . . . . . . 7 | |
15 | 9, 14 | sylan2b 475 | . . . . . 6 |
16 | rankon 8234 | . . . . . . 7 | |
17 | limord 4942 | . . . . . . . . . 10 | |
18 | 7, 17 | ax-mp 5 | . . . . . . . . 9 |
19 | ordelon 4907 | . . . . . . . . 9 | |
20 | 18, 19 | mpan 670 | . . . . . . . 8 |
21 | 20 | adantl 466 | . . . . . . 7 |
22 | onsssuc 4970 | . . . . . . 7 | |
23 | 16, 21, 22 | sylancr 663 | . . . . . 6 |
24 | 15, 23 | bitr4d 256 | . . . . 5 |
25 | 13, 24 | anbi12d 710 | . . . 4 |
26 | eqss 3518 | . . . 4 | |
27 | 25, 26 | syl6rbbr 264 | . . 3 |
28 | 27 | ex 434 | . 2 |
29 | 4, 12, 28 | pm5.21ndd 354 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 C_ wss 3475 U. cuni 4249
Ord word 4882
con0 4883 Lim wlim 4884 suc csuc 4885
dom cdm 5004 " cima 5007 Fun wfun 5587
` cfv 5593 cr1 8201
crnk 8202 |
This theorem is referenced by: rankidn 8261 rankpwi 8262 rankr1g 8271 r1tskina 9181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-r1 8203 df-rank 8204 |
Copyright terms: Public domain | W3C validator |