![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rankr1id | Unicode version |
Description: The rank of the hierarchy of an ordinal number is itself. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankr1id |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3522 | . . . 4 | |
2 | fvex 5881 | . . . . . . . 8 | |
3 | 2 | pwid 4026 | . . . . . . 7 |
4 | r1sucg 8208 | . . . . . . 7 | |
5 | 3, 4 | syl5eleqr 2552 | . . . . . 6 |
6 | r1elwf 8235 | . . . . . 6 | |
7 | 5, 6 | syl 16 | . . . . 5 |
8 | rankr1bg 8242 | . . . . 5 | |
9 | 7, 8 | mpancom 669 | . . . 4 |
10 | 1, 9 | mpbii 211 | . . 3 |
11 | rankonid 8268 | . . . . 5 | |
12 | 11 | biimpi 194 | . . . 4 |
13 | onssr1 8270 | . . . . 5 | |
14 | rankssb 8287 | . . . . 5 | |
15 | 7, 13, 14 | sylc 60 | . . . 4 |
16 | 12, 15 | eqsstr3d 3538 | . . 3 |
17 | 10, 16 | eqssd 3520 | . 2 |
18 | id 22 | . . 3 | |
19 | rankdmr1 8240 | . . 3 | |
20 | 18, 19 | syl6eqelr 2554 | . 2 |
21 | 17, 20 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 = wceq 1395
e. wcel 1818 C_ wss 3475 ~P cpw 4012
U. cuni 4249 con0 4883 suc csuc 4885 dom cdm 5004
" cima 5007 ` cfv 5593 cr1 8201
crnk 8202 |
This theorem is referenced by: rankuni 8302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-r1 8203 df-rank 8204 |
Copyright terms: Public domain | W3C validator |