![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rankunb | Unicode version |
Description: The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankunb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unwf 8249 | . . . . . . 7 | |
2 | rankval3b 8265 | . . . . . . 7 | |
3 | 1, 2 | sylbi 195 | . . . . . 6 |
4 | 3 | eleq2d 2527 | . . . . 5 |
5 | vex 3112 | . . . . . 6 | |
6 | 5 | elintrab 4298 | . . . . 5 |
7 | 4, 6 | syl6bb 261 | . . . 4 |
8 | elun 3644 | . . . . . . 7 | |
9 | rankelb 8263 | . . . . . . . . 9 | |
10 | elun1 3670 | . . . . . . . . 9 | |
11 | 9, 10 | syl6 33 | . . . . . . . 8 |
12 | rankelb 8263 | . . . . . . . . 9 | |
13 | elun2 3671 | . . . . . . . . 9 | |
14 | 12, 13 | syl6 33 | . . . . . . . 8 |
15 | 11, 14 | jaao 509 | . . . . . . 7 |
16 | 8, 15 | syl5bi 217 | . . . . . 6 |
17 | 16 | ralrimiv 2869 | . . . . 5 |
18 | rankon 8234 | . . . . . . 7 | |
19 | rankon 8234 | . . . . . . 7 | |
20 | 18, 19 | onun2i 4998 | . . . . . 6 |
21 | eleq2 2530 | . . . . . . . . 9 | |
22 | 21 | ralbidv 2896 | . . . . . . . 8 |
23 | eleq2 2530 | . . . . . . . 8 | |
24 | 22, 23 | imbi12d 320 | . . . . . . 7 |
25 | 24 | rspcv 3206 | . . . . . 6 |
26 | 20, 25 | ax-mp 5 | . . . . 5 |
27 | 17, 26 | syl5com 30 | . . . 4 |
28 | 7, 27 | sylbid 215 | . . 3 |
29 | 28 | ssrdv 3509 | . 2 |
30 | ssun1 3666 | . . . . 5 | |
31 | rankssb 8287 | . . . . 5 | |
32 | 30, 31 | mpi 17 | . . . 4 |
33 | ssun2 3667 | . . . . 5 | |
34 | rankssb 8287 | . . . . 5 | |
35 | 33, 34 | mpi 17 | . . . 4 |
36 | 32, 35 | unssd 3679 | . . 3 |
37 | 1, 36 | sylbi 195 | . 2 |
38 | 29, 37 | eqssd 3520 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 { crab 2811 u. cun 3473
C_ wss 3475 U. cuni 4249 |^| cint 4286
con0 4883 " cima 5007 ` cfv 5593
cr1 8201
crnk 8202 |
This theorem is referenced by: rankprb 8290 rankopb 8291 rankun 8295 rankaltopb 29629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-r1 8203 df-rank 8204 |
Copyright terms: Public domain | W3C validator |