![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rankval4 | Unicode version |
Description: The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of [Jech] p. 72. Also a special case of Theorem 7V(b) of [Enderton] p. 204. (Contributed by NM, 12-Oct-2003.) |
Ref | Expression |
---|---|
rankr1b.1 |
Ref | Expression |
---|---|
rankval4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2619 | . . . . . 6 | |
2 | nfcv 2619 | . . . . . . 7 | |
3 | nfiu1 4360 | . . . . . . 7 | |
4 | 2, 3 | nffv 5878 | . . . . . 6 |
5 | 1, 4 | dfss2f 3494 | . . . . 5 |
6 | vex 3112 | . . . . . . 7 | |
7 | 6 | rankid 8272 | . . . . . 6 |
8 | ssiun2 4373 | . . . . . . . 8 | |
9 | rankon 8234 | . . . . . . . . . 10 | |
10 | 9 | onsuci 6673 | . . . . . . . . 9 |
11 | rankr1b.1 | . . . . . . . . . 10 | |
12 | 10 | rgenw 2818 | . . . . . . . . . 10 |
13 | iunon 7028 | . . . . . . . . . 10 | |
14 | 11, 12, 13 | mp2an 672 | . . . . . . . . 9 |
15 | r1ord3 8221 | . . . . . . . . 9 | |
16 | 10, 14, 15 | mp2an 672 | . . . . . . . 8 |
17 | 8, 16 | syl 16 | . . . . . . 7 |
18 | 17 | sseld 3502 | . . . . . 6 |
19 | 7, 18 | mpi 17 | . . . . 5 |
20 | 5, 19 | mpgbir 1622 | . . . 4 |
21 | fvex 5881 | . . . . 5 | |
22 | 21 | rankss 8288 | . . . 4 |
23 | 20, 22 | ax-mp 5 | . . 3 |
24 | r1ord3 8221 | . . . . . . 7 | |
25 | 14, 24 | mpan 670 | . . . . . 6 |
26 | 25 | ss2rabi 3581 | . . . . 5 |
27 | intss 4307 | . . . . 5 | |
28 | 26, 27 | ax-mp 5 | . . . 4 |
29 | rankval2 8257 | . . . . 5 | |
30 | 21, 29 | ax-mp 5 | . . . 4 |
31 | intmin 4306 | . . . . . 6 | |
32 | 14, 31 | ax-mp 5 | . . . . 5 |
33 | 32 | eqcomi 2470 | . . . 4 |
34 | 28, 30, 33 | 3sstr4i 3542 | . . 3 |
35 | 23, 34 | sstri 3512 | . 2 |
36 | iunss 4371 | . . 3 | |
37 | 11 | rankel 8278 | . . . 4 |
38 | rankon 8234 | . . . . 5 | |
39 | 9, 38 | onsucssi 6676 | . . . 4 |
40 | 37, 39 | sylib 196 | . . 3 |
41 | 36, 40 | mprgbir 2821 | . 2 |
42 | 35, 41 | eqssi 3519 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 A. wral 2807 { crab 2811
cvv 3109
C_ wss 3475 |^| cint 4286 U_ ciun 4330
con0 4883 suc csuc 4885 ` cfv 5593
cr1 8201
crnk 8202 |
This theorem is referenced by: rankbnd 8307 rankc1 8309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-reg 8039 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-r1 8203 df-rank 8204 |
Copyright terms: Public domain | W3C validator |