![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rankwflemb | Unicode version |
Description: Two ways of saying a set is well-founded. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
rankwflemb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4252 | . . 3 | |
2 | r1funlim 8205 | . . . . . . . 8 | |
3 | 2 | simpli 458 | . . . . . . 7 |
4 | fvelima 5925 | . . . . . . 7 | |
5 | 3, 4 | mpan 670 | . . . . . 6 |
6 | eleq2 2530 | . . . . . . . . 9 | |
7 | 6 | biimprcd 225 | . . . . . . . 8 |
8 | r1tr 8215 | . . . . . . . . . . . 12 | |
9 | trss 4554 | . . . . . . . . . . . 12 | |
10 | 8, 9 | ax-mp 5 | . . . . . . . . . . 11 |
11 | elpwg 4020 | . . . . . . . . . . 11 | |
12 | 10, 11 | mpbird 232 | . . . . . . . . . 10 |
13 | elfvdm 5897 | . . . . . . . . . . 11 | |
14 | r1sucg 8208 | . . . . . . . . . . 11 | |
15 | 13, 14 | syl 16 | . . . . . . . . . 10 |
16 | 12, 15 | eleqtrrd 2548 | . . . . . . . . 9 |
17 | 16 | a1i 11 | . . . . . . . 8 |
18 | 7, 17 | syl9 71 | . . . . . . 7 |
19 | 18 | reximdvai 2929 | . . . . . 6 |
20 | 5, 19 | syl5 32 | . . . . 5 |
21 | 20 | imp 429 | . . . 4 |
22 | 21 | exlimiv 1722 | . . 3 |
23 | 1, 22 | sylbi 195 | . 2 |
24 | elfvdm 5897 | . . . . . 6 | |
25 | fvelrn 6024 | . . . . . 6 | |
26 | 3, 24, 25 | sylancr 663 | . . . . 5 |
27 | df-ima 5017 | . . . . . 6 | |
28 | funrel 5610 | . . . . . . . . 9 | |
29 | 3, 28 | ax-mp 5 | . . . . . . . 8 |
30 | 2 | simpri 462 | . . . . . . . . 9 |
31 | limord 4942 | . . . . . . . . 9 | |
32 | ordsson 6625 | . . . . . . . . 9 | |
33 | 30, 31, 32 | mp2b 10 | . . . . . . . 8 |
34 | relssres 5316 | . . . . . . . 8 | |
35 | 29, 33, 34 | mp2an 672 | . . . . . . 7 |
36 | 35 | rneqi 5234 | . . . . . 6 |
37 | 27, 36 | eqtri 2486 | . . . . 5 |
38 | 26, 37 | syl6eleqr 2556 | . . . 4 |
39 | elunii 4254 | . . . 4 | |
40 | 38, 39 | mpdan 668 | . . 3 |
41 | 40 | rexlimivw 2946 | . 2 |
42 | 23, 41 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 E. wrex 2808 C_ wss 3475
~P cpw 4012 U. cuni 4249 Tr wtr 4545
Ord word 4882
con0 4883 Lim wlim 4884 suc csuc 4885
dom cdm 5004 ran crn 5005 |` cres 5006
" cima 5007 Rel wrel 5009 Fun wfun 5587
` cfv 5593 cr1 8201 |
This theorem is referenced by: rankf 8233 r1elwf 8235 rankvalb 8236 rankidb 8239 rankwflem 8254 tcrank 8323 dfac12r 8547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-r1 8203 |
Copyright terms: Public domain | W3C validator |