![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rankxplim | Unicode version |
Description: The rank of a Cartesian product when the rank of the union of its arguments is a limit ordinal. Part of Exercise 4 of [Kunen] p. 107. See rankxpsuc 8321 for the successor case. (Contributed by NM, 19-Sep-2006.) |
Ref | Expression |
---|---|
rankxplim.1 | |
rankxplim.2 |
Ref | Expression |
---|---|
rankxplim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuni 4683 | . . . . . . . . . 10 | |
2 | vex 3112 | . . . . . . . . . . . 12 | |
3 | vex 3112 | . . . . . . . . . . . 12 | |
4 | 2, 3 | uniop 4755 | . . . . . . . . . . 11 |
5 | 4 | pweqi 4016 | . . . . . . . . . 10 |
6 | 1, 5 | sseqtri 3535 | . . . . . . . . 9 |
7 | pwuni 4683 | . . . . . . . . . . 11 | |
8 | 2, 3 | unipr 4262 | . . . . . . . . . . . 12 |
9 | 8 | pweqi 4016 | . . . . . . . . . . 11 |
10 | 7, 9 | sseqtri 3535 | . . . . . . . . . 10 |
11 | sspwb 4701 | . . . . . . . . . 10 | |
12 | 10, 11 | mpbi 208 | . . . . . . . . 9 |
13 | 6, 12 | sstri 3512 | . . . . . . . 8 |
14 | 2, 3 | unex 6598 | . . . . . . . . . . 11 |
15 | 14 | pwex 4635 | . . . . . . . . . 10 |
16 | 15 | pwex 4635 | . . . . . . . . 9 |
17 | 16 | rankss 8288 | . . . . . . . 8 |
18 | 13, 17 | ax-mp 5 | . . . . . . 7 |
19 | rankxplim.1 | . . . . . . . . . . 11 | |
20 | 19 | rankel 8278 | . . . . . . . . . 10 |
21 | rankxplim.2 | . . . . . . . . . . 11 | |
22 | 21 | rankel 8278 | . . . . . . . . . 10 |
23 | 2, 3, 19, 21 | rankelun 8311 | . . . . . . . . . 10 |
24 | 20, 22, 23 | syl2an 477 | . . . . . . . . 9 |
25 | 24 | adantl 466 | . . . . . . . 8 |
26 | ranklim 8283 | . . . . . . . . . 10 | |
27 | ranklim 8283 | . . . . . . . . . 10 | |
28 | 26, 27 | bitrd 253 | . . . . . . . . 9 |
29 | 28 | adantr 465 | . . . . . . . 8 |
30 | 25, 29 | mpbid 210 | . . . . . . 7 |
31 | rankon 8234 | . . . . . . . 8 | |
32 | rankon 8234 | . . . . . . . 8 | |
33 | ontr2 4930 | . . . . . . . 8 | |
34 | 31, 32, 33 | mp2an 672 | . . . . . . 7 |
35 | 18, 30, 34 | sylancr 663 | . . . . . 6 |
36 | 31, 32 | onsucssi 6676 | . . . . . 6 |
37 | 35, 36 | sylib 196 | . . . . 5 |
38 | 37 | ralrimivva 2878 | . . . 4 |
39 | fveq2 5871 | . . . . . . . 8 | |
40 | suceq 4948 | . . . . . . . 8 | |
41 | 39, 40 | syl 16 | . . . . . . 7 |
42 | 41 | sseq1d 3530 | . . . . . 6 |
43 | 42 | ralxp 5149 | . . . . 5 |
44 | 19, 21 | xpex 6604 | . . . . . 6 |
45 | 44 | rankbnd 8307 | . . . . 5 |
46 | 43, 45 | bitr3i 251 | . . . 4 |
47 | 38, 46 | sylib 196 | . . 3 |
48 | 47 | adantr 465 | . 2 |
49 | 19, 21 | rankxpl 8314 | . . 3 |
50 | 49 | adantl 466 | . 2 |
51 | 48, 50 | eqssd 3520 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 cvv 3109
u. cun 3473 C_ wss 3475 c0 3784 ~P cpw 4012 { cpr 4031
<. cop 4035 U. cuni 4249 con0 4883 Lim wlim 4884 suc csuc 4885
X. cxp 5002 ` cfv 5593 crnk 8202 |
This theorem is referenced by: rankxplim3 8320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-reg 8039 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-r1 8203 df-rank 8204 |
Copyright terms: Public domain | W3C validator |