![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rbaib | Unicode version |
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
Ref | Expression |
---|---|
baib.1 |
Ref | Expression |
---|---|
rbaib |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 | |
2 | 1 | rbaibr 905 | . 2 |
3 | 2 | bicomd 201 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 |
This theorem is referenced by: cador 1458 reusv1 4652 reusv2lem1 4653 opres 5288 cores 5515 fvres 5885 fpwwe2 9042 fzsplit2 11739 saddisjlem 14114 smupval 14138 smueqlem 14140 prmrec 14440 ablnsg 16853 cnprest 19790 flimrest 20484 fclsrest 20525 tsmssubm 20644 setsxms 20982 tchcph 21680 ellimc2 22281 fsumvma2 23489 chpub 23495 mdbr2 27215 mdsl2i 27241 fzsplit3 27599 posrasymb 27645 trleile 27654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |