![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rbaibr | Unicode version |
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
Ref | Expression |
---|---|
baib.1 |
Ref | Expression |
---|---|
rbaibr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba 503 | . 2 | |
2 | baib.1 | . 2 | |
3 | 1, 2 | syl6bbr 263 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 |
This theorem is referenced by: rbaib 906 ssunsn2 4189 cmpfi 19908 sdrgacs 31150 nanorxor 31185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |