MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgeq12 Unicode version

Theorem rdgeq12 7098
Description: Equality theorem for the recursive definition generator. (Contributed by Scott Fenton, 28-Apr-2012.)
Assertion
Ref Expression
rdgeq12

Proof of Theorem rdgeq12
StepHypRef Expression
1 rdgeq2 7097 . 2
2 rdgeq1 7096 . 2
31, 2sylan9eqr 2520 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  =wceq 1395  reccrdg 7094
This theorem is referenced by:  seqomeq12  7138  seqeq3  12112  trpredeq1  29303  trpredeq2  29304  trpred0  29319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-un 3480  df-if 3942  df-uni 4250  df-br 4453  df-opab 4511  df-mpt 4512  df-iota 5556  df-fv 5601  df-recs 7061  df-rdg 7095
  Copyright terms: Public domain W3C validator