MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  re1luk2 Unicode version

Theorem re1luk2 1544
Description: luk-2 1489 derived from the Tarski-Bernays-Wajsberg axioms. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
re1luk2

Proof of Theorem re1luk2
StepHypRef Expression
1 tbw-negdf 1532 . . . 4
2 tbw-ax2 1534 . . . . 5
3 tbwlem4 1541 . . . . 5
42, 3ax-mp 5 . . . 4
51, 4ax-mp 5 . . 3
6 tbw-ax1 1533 . . 3
75, 6ax-mp 5 . 2
8 tbw-ax3 1535 . 2
97, 8tbwsyl 1537 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4   wfal 1400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-tru 1398  df-fal 1401
  Copyright terms: Public domain W3C validator