MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  re1luk3 Unicode version

Theorem re1luk3 1545
Description: luk-3 1490 derived from the Tarski-Bernays-Wajsberg axioms.

This theorem, along with re1luk1 1543 and re1luk2 1544 proves that tbw-ax1 1533, tbw-ax2 1534, tbw-ax3 1535, and tbw-ax4 1536, with ax-mp 5 can be used as a complete axiom system for all of propositional calculus. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
re1luk3

Proof of Theorem re1luk3
StepHypRef Expression
1 tbw-negdf 1532 . . 3
2 tbwlem5 1542 . . 3
31, 2ax-mp 5 . 2
4 tbw-ax4 1536 . . . 4
5 tbw-ax1 1533 . . . . 5
6 tbwlem1 1538 . . . . 5
75, 6ax-mp 5 . . . 4
84, 7ax-mp 5 . . 3
9 tbwlem1 1538 . . 3
108, 9ax-mp 5 . 2
11 tbw-ax1 1533 . 2
123, 10, 11mpsyl 63 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4   wfal 1400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-tru 1398  df-fal 1401
  Copyright terms: Public domain W3C validator