![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > relcnvtr | Unicode version |
Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
relcnvtr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5193 | . . 3 | |
2 | cnvss 5180 | . . 3 | |
3 | 1, 2 | syl5eqssr 3548 | . 2 |
4 | cnvco 5193 | . . . 4 | |
5 | cnvss 5180 | . . . 4 | |
6 | sseq1 3524 | . . . . 5 | |
7 | dfrel2 5462 | . . . . . . 7 | |
8 | coeq1 5165 | . . . . . . . . . 10 | |
9 | coeq2 5166 | . . . . . . . . . 10 | |
10 | 8, 9 | eqtrd 2498 | . . . . . . . . 9 |
11 | id 22 | . . . . . . . . 9 | |
12 | 10, 11 | sseq12d 3532 | . . . . . . . 8 |
13 | 12 | biimpd 207 | . . . . . . 7 |
14 | 7, 13 | sylbi 195 | . . . . . 6 |
15 | 14 | com12 31 | . . . . 5 |
16 | 6, 15 | syl6bi 228 | . . . 4 |
17 | 4, 5, 16 | mpsyl 63 | . . 3 |
18 | 17 | com12 31 | . 2 |
19 | 3, 18 | impbid2 204 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 C_ wss 3475 `' ccnv 5003
o. ccom 5008 Rel wrel 5009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 |
Copyright terms: Public domain | W3C validator |