![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reldisj | Unicode version |
Description: Two ways of saying that two classes are disjoint, using the complement of relative to a universe . (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
reldisj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3492 | . . . 4 | |
2 | pm5.44 911 | . . . . . 6 | |
3 | eldif 3485 | . . . . . . 7 | |
4 | 3 | imbi2i 312 | . . . . . 6 |
5 | 2, 4 | syl6bbr 263 | . . . . 5 |
6 | 5 | sps 1865 | . . . 4 |
7 | 1, 6 | sylbi 195 | . . 3 |
8 | 7 | albidv 1713 | . 2 |
9 | disj1 3869 | . 2 | |
10 | dfss2 3492 | . 2 | |
11 | 8, 9, 10 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
= wceq 1395 e. wcel 1818 \ cdif 3472
i^i cin 3474 C_ wss 3475 c0 3784 |
This theorem is referenced by: disj2 3874 oacomf1olem 7232 domdifsn 7620 elfiun 7910 cantnfp1lem3 8120 cantnfp1lem3OLD 8146 ssxr 9675 structcnvcnv 14643 fidomndrng 17956 elcls 19574 ist1-2 19848 nrmsep2 19857 nrmsep 19858 isnrm3 19860 isreg2 19878 hauscmplem 19906 connsub 19922 iunconlem 19928 llycmpkgen2 20051 hausdiag 20146 trfil3 20389 isufil2 20409 filufint 20421 blcld 21008 i1fima2 22086 i1fd 22088 usgrares1 24410 nbgrassvwo 24437 nbgrassvwo2 24438 itg2addnclem2 30067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 |
Copyright terms: Public domain | W3C validator |