Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldom Unicode version

Theorem reldom 7542
 Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
reldom

Proof of Theorem reldom
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dom 7538 . 2
21relopabi 5133 1
 Colors of variables: wff setvar class Syntax hints:  E.wex 1612  Relwrel 5009  -1-1->wf1 5590   cdom 7534 This theorem is referenced by:  relsdom  7543  brdomg  7546  brdomi  7547  domtr  7588  undom  7625  xpdom2  7632  xpdom1g  7634  domunsncan  7637  sbth  7657  sbthcl  7659  dom0  7665  fodomr  7688  pwdom  7689  domssex  7698  mapdom1  7702  mapdom2  7708  fineqv  7755  infsdomnn  7801  infn0  7802  elharval  8010  harword  8012  domwdom  8021  unxpwdom  8036  infdifsn  8094  infdiffi  8095  ac10ct  8436  iunfictbso  8516  cdadom1  8587  cdainf  8593  infcda1  8594  pwcdaidm  8596  cdalepw  8597  unctb  8606  infcdaabs  8607  infunabs  8608  infpss  8618  infmap2  8619  fictb  8646  infpssALT  8714  fin34  8791  ttukeylem1  8910  fodomb  8925  wdomac  8926  brdom3  8927  iundom2g  8936  iundom  8938  infxpidm  8958  iunctb  8970  gchdomtri  9028  pwfseq  9063  pwxpndom2  9064  pwxpndom  9065  pwcdandom  9066  gchpwdom  9069  gchaclem  9077  reexALT  11243  hashdomi  12448  cctop  19507  1stcrestlem  19953  2ndcdisj2  19958  dis2ndc  19961  hauspwdom  20002  ufilen  20431  ovoliunnul  21918  uniiccdif  21987  ovoliunnfl  30056  voliunnfl  30058  volsupnfl  30059 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-opab 4511  df-xp 5010  df-rel 5011  df-dom 7538
 Copyright terms: Public domain W3C validator