Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  releldmi Unicode version

Theorem releldmi 5244
 Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.)
Hypothesis
Ref Expression
releldm.1
Assertion
Ref Expression
releldmi

Proof of Theorem releldmi
StepHypRef Expression
1 releldm.1 . 2
2 releldm 5240 . 2
31, 2mpan 670 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  e.wcel 1818   class class class wbr 4452  domcdm 5004  Relwrel 5009 This theorem is referenced by:  fpwwe2lem11  9039  fpwwe2lem12  9040  fpwwe2lem13  9041  rlimpm  13323  rlimdm  13374  iserex  13479  caucvgrlem2  13497  caucvgr  13498  caurcvg2  13500  caucvg  13501  fsumcvg3  13551  cvgcmpce  13632  climcnds  13663  trirecip  13674  ledm  15854  cmetcaulem  21727  ovoliunlem1  21913  mbflimlem  22074  dvaddf  22345  dvmulf  22346  dvcof  22351  dvcnv  22378  abelthlem5  22830  emcllem6  23330  hlimcaui  26154  lgamgulmlem4  28574  sumnnodd  31636  stirlinglem12  31867  fouriersw  32014  rlimdmafv  32262 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-xp 5010  df-rel 5011  df-dm 5014
 Copyright terms: Public domain W3C validator