MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releq Unicode version

Theorem releq 5090
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3524 . 2
2 df-rel 5011 . 2
3 df-rel 5011 . 2
41, 2, 33bitr4g 288 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  =wceq 1395   cvv 3109  C_wss 3475  X.cxp 5002  Relwrel 5009
This theorem is referenced by:  releqi  5091  releqd  5092  dfrel2  5462  tposfn2  6996  ereq1  7337  isps  15832  isdir  15862  fpwrelmapffslem  27555  relexprel  29057  frrlem6  29396  prtlem12  30608  bnj1321  34083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-in 3482  df-ss 3489  df-rel 5011
  Copyright terms: Public domain W3C validator