MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relin2 Unicode version

Theorem relin2 5126
Description: The intersection with a relation is a relation. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
relin2

Proof of Theorem relin2
StepHypRef Expression
1 inss2 3718 . 2
2 relss 5095 . 2
31, 2ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  i^icin 3474  C_wss 3475  Relwrel 5009
This theorem is referenced by:  intasym  5387  asymref  5388  poirr2  5396  brdom3  8927  brdom5  8928  brdom4  8929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-in 3482  df-ss 3489  df-rel 5011
  Copyright terms: Public domain W3C validator