MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relint Unicode version

Theorem relint 5131
Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
relint
Distinct variable group:   ,

Proof of Theorem relint
StepHypRef Expression
1 reliin 5129 . 2
2 intiin 4384 . . 3
32releqi 5091 . 2
41, 3sylibr 212 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  E.wrex 2808  |^|cint 4286  |^|_ciin 4331  Relwrel 5009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-v 3111  df-in 3482  df-ss 3489  df-int 4287  df-iin 4333  df-rel 5011
  Copyright terms: Public domain W3C validator