![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > relmptopab | Unicode version |
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
relmptopab.1 |
Ref | Expression |
---|---|
relmptopab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relmptopab.1 | . . . 4 | |
2 | 1 | fvmptss 5964 | . . 3 |
3 | relopab 5134 | . . . . 5 | |
4 | df-rel 5011 | . . . . 5 | |
5 | 3, 4 | mpbi 208 | . . . 4 |
6 | 5 | a1i 11 | . . 3 |
7 | 2, 6 | mprg 2820 | . 2 |
8 | df-rel 5011 | . 2 | |
9 | 7, 8 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 e. wcel 1818
cvv 3109
C_ wss 3475 { copab 4509 e. cmpt 4510
X. cxp 5002 Rel wrel 5009 ` cfv 5593 |
This theorem is referenced by: reldvdsr 17293 lmrel 19731 phtpcrel 21493 ulmrel 22773 ercgrg 23908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fv 5601 |
Copyright terms: Public domain | W3C validator |