![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > relopab | Unicode version |
Description: A class of ordered pairs is a relation. (Contributed by NM, 8-Mar-1995.) (Unnecessary distinct variable restrictions were removed by Alan Sare, 9-Jul-2013.) (Proof shortened by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
relopab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . 2 | |
2 | 1 | relopabi 5133 | 1 |
Colors of variables: wff setvar class |
Syntax hints: { copab 4509 Rel wrel 5009 |
This theorem is referenced by: opabid2 5137 inopab 5138 difopab 5139 dfres2 5331 cnvopab 5412 funopab 5626 relmptopab 6523 elopabi 6861 relmpt2opab 6882 shftfn 12906 joindmss 15637 meetdmss 15651 eltopspOLD 19419 lgsquadlem3 23631 perpln1 24087 perpln2 24088 fpwrelmapffslem 27555 fpwrelmap 27556 relfae 28219 prtlem12 30608 cicer 32590 dicvalrelN 36912 diclspsn 36921 dih1dimatlem 37056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-opab 4511 df-xp 5010 df-rel 5011 |
Copyright terms: Public domain | W3C validator |