Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  relwdom Unicode version

Theorem relwdom 8013
 Description: Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
relwdom

Proof of Theorem relwdom
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wdom 8006 . 2
21relopabi 5133 1
 Colors of variables: wff setvar class Syntax hints:  \/wo 368  =wceq 1395  E.wex 1612   c0 3784  Relwrel 5009  -onto->wfo 5591   cwdom 8004 This theorem is referenced by:  brwdom  8014  brwdomi  8015  brwdomn0  8016  wdomtr  8022  wdompwdom  8025  canthwdom  8026  brwdom3i  8030  unwdomg  8031  xpwdomg  8032  wdomfil  8463  isfin32i  8766  hsmexlem1  8827  hsmexlem3  8829  wdomac  8926 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-opab 4511  df-xp 5010  df-rel 5011  df-wdom 8006
 Copyright terms: Public domain W3C validator