![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > renegcli | Unicode version |
Description: Closure law for negative of reals. (Note: this inference proof style and the deduction theorem usage in renegcl 9905 is deprecated, but is retained for its demonstration value.) (Contributed by NM, 17-Jan-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
renegcl.1 |
Ref | Expression |
---|---|
renegcli |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl.1 | . 2 | |
2 | ax-rnegex 9584 | . 2 | |
3 | recn 9603 | . . . . 5 | |
4 | df-neg 9831 | . . . . . . 7 | |
5 | 4 | eqeq1i 2464 | . . . . . 6 |
6 | 0cn 9609 | . . . . . . 7 | |
7 | 1 | recni 9629 | . . . . . . 7 |
8 | subadd 9846 | . . . . . . 7 | |
9 | 6, 7, 8 | mp3an12 1314 | . . . . . 6 |
10 | 5, 9 | syl5bb 257 | . . . . 5 |
11 | 3, 10 | syl 16 | . . . 4 |
12 | eleq1a 2540 | . . . 4 | |
13 | 11, 12 | sylbird 235 | . . 3 |
14 | 13 | rexlimiv 2943 | . 2 |
15 | 1, 2, 14 | mp2b 10 | 1 |
Copyright terms: Public domain | W3C validator |