![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > repswcshw | Unicode version |
Description: A cyclically shifted "repeated symbol word". (Contributed by Alexander van der Vekens, 7-Nov-2018.) |
Ref | Expression |
---|---|
repswcshw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0csh0 12764 | . . . . 5 | |
2 | repsw0 12749 | . . . . . 6 | |
3 | 2 | oveq1d 6311 | . . . . 5 |
4 | 1, 3, 2 | 3eqtr4a 2524 | . . . 4 |
5 | 4 | 3ad2ant1 1017 | . . 3 |
6 | oveq2 6304 | . . . . 5 | |
7 | 6 | oveq1d 6311 | . . . 4 |
8 | 7, 6 | eqeq12d 2479 | . . 3 |
9 | 5, 8 | syl5ibr 221 | . 2 |
10 | idd 24 | . . . 4 | |
11 | df-ne 2654 | . . . . 5 | |
12 | elnnne0 10834 | . . . . . 6 | |
13 | 12 | simplbi2com 627 | . . . . 5 |
14 | 11, 13 | sylbir 213 | . . . 4 |
15 | idd 24 | . . . 4 | |
16 | 10, 14, 15 | 3anim123d 1306 | . . 3 |
17 | nnnn0 10827 | . . . . . . 7 | |
18 | 17 | anim2i 569 | . . . . . 6 |
19 | repsw 12747 | . . . . . 6 | |
20 | 18, 19 | syl 16 | . . . . 5 |
21 | cshword 12762 | . . . . 5 | |
22 | 20, 21 | stoic3 1609 | . . . 4 |
23 | repswlen 12748 | . . . . . . . . . 10 | |
24 | 18, 23 | syl 16 | . . . . . . . . 9 |
25 | 24 | oveq2d 6312 | . . . . . . . 8 |
26 | 25, 24 | opeq12d 4225 | . . . . . . 7 |
27 | 26 | oveq2d 6312 | . . . . . 6 |
28 | 25 | opeq2d 4224 | . . . . . . 7 |
29 | 28 | oveq2d 6312 | . . . . . 6 |
30 | 27, 29 | oveq12d 6314 | . . . . 5 |
31 | 30 | 3adant3 1016 | . . . 4 |
32 | 18 | 3adant3 1016 | . . . . . . 7 |
33 | zmodcl 12015 | . . . . . . . . . 10 | |
34 | 33 | ancoms 453 | . . . . . . . . 9 |
35 | 17 | adantr 465 | . . . . . . . . 9 |
36 | 34, 35 | jca 532 | . . . . . . . 8 |
37 | 36 | 3adant1 1014 | . . . . . . 7 |
38 | nnre 10568 | . . . . . . . . 9 | |
39 | 38 | leidd 10144 | . . . . . . . 8 |
40 | 39 | 3ad2ant2 1018 | . . . . . . 7 |
41 | repswswrd 12756 | . . . . . . 7 | |
42 | 32, 37, 40, 41 | syl3anc 1228 | . . . . . 6 |
43 | 0nn0 10835 | . . . . . . . . 9 | |
44 | 34, 43 | jctil 537 | . . . . . . . 8 |
45 | 44 | 3adant1 1014 | . . . . . . 7 |
46 | zre 10893 | . . . . . . . . . 10 | |
47 | nnrp 11258 | . . . . . . . . . 10 | |
48 | modcl 12000 | . . . . . . . . . 10 | |
49 | 46, 47, 48 | syl2anr 478 | . . . . . . . . 9 |
50 | 38 | adantr 465 | . . . . . . . . 9 |
51 | modlt 12006 | . . . . . . . . . 10 | |
52 | 46, 47, 51 | syl2anr 478 | . . . . . . . . 9 |
53 | 49, 50, 52 | ltled 9754 | . . . . . . . 8 |
54 | 53 | 3adant1 1014 | . . . . . . 7 |
55 | repswswrd 12756 | . . . . . . 7 | |
56 | 32, 45, 54, 55 | syl3anc 1228 | . . . . . 6 |
57 | 42, 56 | oveq12d 6314 | . . . . 5 |
58 | simp1 996 | . . . . . 6 | |
59 | 33 | nn0red 10878 | . . . . . . . . . 10 |
60 | 59 | ancoms 453 | . . . . . . . . 9 |
61 | 60, 50, 52 | ltled 9754 | . . . . . . . 8 |
62 | 61 | 3adant1 1014 | . . . . . . 7 |
63 | 34 | 3adant1 1014 | . . . . . . . 8 |
64 | 17 | 3ad2ant2 1018 | . . . . . . . 8 |
65 | nn0sub 10871 | . . . . . . . 8 | |
66 | 63, 64, 65 | syl2anc 661 | . . . . . . 7 |
67 | 62, 66 | mpbid 210 | . . . . . 6 |
68 | 33 | nn0ge0d 10880 | . . . . . . . . 9 |
69 | 68 | ancoms 453 | . . . . . . . 8 |
70 | 69 | 3adant1 1014 | . . . . . . 7 |
71 | 63, 43 | jctil 537 | . . . . . . . 8 |
72 | nn0sub 10871 | . . . . . . . 8 | |
73 | 71, 72 | syl 16 | . . . . . . 7 |
74 | 70, 73 | mpbid 210 | . . . . . 6 |
75 | repswccat 12757 | . . . . . 6 | |
76 | 58, 67, 74, 75 | syl3anc 1228 | . . . . 5 |
77 | nncn 10569 | . . . . . . . . . . 11 | |
78 | 77 | adantl 466 | . . . . . . . . . 10 |
79 | 33 | nn0cnd 10879 | . . . . . . . . . 10 |
80 | 0cnd 9610 | . . . . . . . . . 10 | |
81 | 78, 79, 80 | npncand 9978 | . . . . . . . . 9 |
82 | 77 | subid1d 9943 | . . . . . . . . . 10 |
83 | 82 | adantl 466 | . . . . . . . . 9 |
84 | 81, 83 | eqtrd 2498 | . . . . . . . 8 |
85 | 84 | ancoms 453 | . . . . . . 7 |
86 | 85 | 3adant1 1014 | . . . . . 6 |
87 | 86 | oveq2d 6312 | . . . . 5 |
88 | 57, 76, 87 | 3eqtrd 2502 | . . . 4 |
89 | 22, 31, 88 | 3eqtrd 2502 | . . 3 |
90 | 16, 89 | syl6 33 | . 2 |
91 | 9, 90 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 =/= wne 2652
c0 3784 <. cop 4035 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 caddc 9516 clt 9649 cle 9650 cmin 9828 cn 10561 cn0 10820
cz 10889 crp 11249
cmo 11996 chash 12405 Word cword 12534 cconcat 12536 csubstr 12538 creps 12541 ccsh 12759 |
This theorem is referenced by: cshwrepswhash1 14587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-fl 11929 df-mod 11997 df-hash 12406 df-word 12542 df-concat 12544 df-substr 12546 df-reps 12549 df-csh 12760 |
Copyright terms: Public domain | W3C validator |