![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > resabs1d | Unicode version |
Description: Absorption law for restriction, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
resabs1d.b |
Ref | Expression |
---|---|
resabs1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resabs1d.b | . 2 | |
2 | resabs1 5307 | . 2 | |
3 | 1, 2 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
C_ wss 3475 |` cres 5006 |
This theorem is referenced by: f2ndf 6906 ablfac1eulem 17123 kgencn2 20058 tsmsres 20646 resubmet 21307 xrge0gsumle 21338 cmsss 21789 minveclem3a 21842 dvlip2 22396 c1liplem1 22397 efcvx 22844 logccv 23044 loglesqrt 23132 wilthlem2 23343 cvmlift2lem9 28756 mbfresfi 30061 ssbnd 30284 prdsbnd2 30291 cnpwstotbnd 30293 reheibor 30335 diophin 30706 fnwe2lem2 30997 dvsid 31236 limcresiooub 31648 limcresioolb 31649 dvmptresicc 31716 fourierdlem46 31935 fourierdlem48 31937 fourierdlem49 31938 fourierdlem58 31947 fourierdlem72 31961 fourierdlem73 31962 fourierdlem74 31963 fourierdlem75 31964 fourierdlem89 31978 fourierdlem90 31979 fourierdlem91 31980 fourierdlem93 31982 fourierdlem100 31989 fourierdlem102 31991 fourierdlem103 31992 fourierdlem104 31993 fourierdlem107 31996 fourierdlem111 32000 fourierdlem112 32001 fourierdlem114 32003 afvres 32257 funcrngcsetc 32806 funcrngcsetcALT 32807 funcringcsetc 32843 bnj1280 34076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-opab 4511 df-xp 5010 df-rel 5011 df-res 5016 |
Copyright terms: Public domain | W3C validator |