![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rescnvcnv | Unicode version |
Description: The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
rescnvcnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv2 5465 | . . 3 | |
2 | 1 | reseq1i 5274 | . 2 |
3 | resres 5291 | . 2 | |
4 | ssv 3523 | . . . 4 | |
5 | sseqin2 3716 | . . . 4 | |
6 | 4, 5 | mpbi 208 | . . 3 |
7 | 6 | reseq2i 5275 | . 2 |
8 | 2, 3, 7 | 3eqtri 2490 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 cvv 3109
i^i cin 3474 C_ wss 3475 `' ccnv 5003
|` cres 5006 |
This theorem is referenced by: cnvcnvres 5476 imacnvcnv 5477 resdm2 5502 resdmres 5503 coires1 5530 f1oresrab 6063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-res 5016 |
Copyright terms: Public domain | W3C validator |