![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > resdif | Unicode version |
Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.) |
Ref | Expression |
---|---|
resdif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofun 5801 | . . . . . 6 | |
2 | difss 3630 | . . . . . . 7 | |
3 | fof 5800 | . . . . . . . 8 | |
4 | fdm 5740 | . . . . . . . 8 | |
5 | 3, 4 | syl 16 | . . . . . . 7 |
6 | 2, 5 | syl5sseqr 3552 | . . . . . 6 |
7 | fores 5809 | . . . . . 6 | |
8 | 1, 6, 7 | syl2anc 661 | . . . . 5 |
9 | resres 5291 | . . . . . . . 8 | |
10 | indif 3739 | . . . . . . . . 9 | |
11 | 10 | reseq2i 5275 | . . . . . . . 8 |
12 | 9, 11 | eqtri 2486 | . . . . . . 7 |
13 | foeq1 5796 | . . . . . . 7 | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 |
15 | 12 | rneqi 5234 | . . . . . . . 8 |
16 | df-ima 5017 | . . . . . . . 8 | |
17 | df-ima 5017 | . . . . . . . 8 | |
18 | 15, 16, 17 | 3eqtr4i 2496 | . . . . . . 7 |
19 | foeq3 5798 | . . . . . . 7 | |
20 | 18, 19 | ax-mp 5 | . . . . . 6 |
21 | 14, 20 | bitri 249 | . . . . 5 |
22 | 8, 21 | sylib 196 | . . . 4 |
23 | funres11 5661 | . . . 4 | |
24 | dff1o3 5827 | . . . . 5 | |
25 | 24 | biimpri 206 | . . . 4 |
26 | 22, 23, 25 | syl2anr 478 | . . 3 |
27 | 26 | 3adant3 1016 | . 2 |
28 | df-ima 5017 | . . . . . . 7 | |
29 | forn 5803 | . . . . . . 7 | |
30 | 28, 29 | syl5eq 2510 | . . . . . 6 |
31 | df-ima 5017 | . . . . . . 7 | |
32 | forn 5803 | . . . . . . 7 | |
33 | 31, 32 | syl5eq 2510 | . . . . . 6 |
34 | 30, 33 | anim12i 566 | . . . . 5 |
35 | imadif 5668 | . . . . . 6 | |
36 | difeq12 3616 | . . . . . 6 | |
37 | 35, 36 | sylan9eq 2518 | . . . . 5 |
38 | 34, 37 | sylan2 474 | . . . 4 |
39 | 38 | 3impb 1192 | . . 3 |
40 | f1oeq3 5814 | . . 3 | |
41 | 39, 40 | syl 16 | . 2 |
42 | 27, 41 | mpbid 210 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
\ cdif 3472 i^i cin 3474 C_ wss 3475
`' ccnv 5003 dom cdm 5004 ran crn 5005
|` cres 5006 " cima 5007 Fun wfun 5587
--> wf 5589 -onto-> wfo 5591 -1-1-onto-> wf1o 5592 |
This theorem is referenced by: resin 5842 canthp1lem2 9052 subfacp1lem3 28626 subfacp1lem5 28628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 |
Copyright terms: Public domain | W3C validator |