Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdisj Unicode version

Theorem resdisj 5441
 Description: A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
resdisj

Proof of Theorem resdisj
StepHypRef Expression
1 resres 5291 . 2
2 reseq2 5273 . . 3
3 res0 5283 . . 3
42, 3syl6eq 2514 . 2
51, 4syl5eq 2510 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  =wceq 1395  i^icin 3474   c0 3784  |`cres 5006 This theorem is referenced by:  fvsnun1  6106 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-opab 4511  df-xp 5010  df-rel 5011  df-res 5016
 Copyright terms: Public domain W3C validator