![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > resdmdfsn | Unicode version |
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself. (Contributed by AV, 2-Dec-2018.) |
Ref | Expression |
---|---|
resdmdfsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resindm 5323 | . 2 | |
2 | indif1 3741 | . . . . 5 | |
3 | incom 3690 | . . . . . . 7 | |
4 | inv1 3812 | . . . . . . 7 | |
5 | 3, 4 | eqtri 2486 | . . . . . 6 |
6 | 5 | difeq1i 3617 | . . . . 5 |
7 | 2, 6 | eqtri 2486 | . . . 4 |
8 | 7 | a1i 11 | . . 3 |
9 | 8 | reseq2d 5278 | . 2 |
10 | 1, 9 | eqtr3d 2500 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
cvv 3109
\ cdif 3472 i^i cin 3474 { csn 4029
dom cdm 5004 |` cres 5006 Rel wrel 5009 |
This theorem is referenced by: funresdfunsn 6113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-dm 5014 df-res 5016 |
Copyright terms: Public domain | W3C validator |