![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > resfunexgALT | Unicode version |
Description: Alternate proof of resfunexg 6137, shorter but requiring ax-pow 4630 and ax-un 6592. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
resfunexgALT |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmresexg 5301 | . . . 4 | |
2 | 1 | adantl 466 | . . 3 |
3 | df-ima 5017 | . . . 4 | |
4 | funimaexg 5670 | . . . 4 | |
5 | 3, 4 | syl5eqelr 2550 | . . 3 |
6 | 2, 5 | jca 532 | . 2 |
7 | xpexg 6602 | . 2 | |
8 | relres 5306 | . . . 4 | |
9 | relssdmrn 5533 | . . . 4 | |
10 | 8, 9 | ax-mp 5 | . . 3 |
11 | ssexg 4598 | . . 3 | |
12 | 10, 11 | mpan 670 | . 2 |
13 | 6, 7, 12 | 3syl 20 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
e. wcel 1818 cvv 3109
C_ wss 3475 X. cxp 5002 dom cdm 5004
ran crn 5005 |` cres 5006 " cima 5007
Rel wrel 5009
Fun wfun 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-fun 5595 |
Copyright terms: Public domain | W3C validator |